Assemblathon 1

A competitive assessment of de novo short read assembly methods

Benedict Paten

Assemblathon 1

- Project to assess de novo assembly with short read sequencing technology
- Motivated by needs of Genome IOk
- Assemblers invited to compete blind
- Evaluation performed by UC Davis and UCSC, who did not contribute assemblies*
*actually, UCSD contributed a few default parameter assemblies using popular programs

Assemblathon 1

- Dataset: a simulated vertebrate genome, at I/IOth scale
- Used Evolver - complex simulation tool from Arend Sidow and Robert Edgar
- Started with hgl8 chrl3 and "evolved" the above tree
- Eventual genome had 3 chromosomes, ~ 120 megabases total length
- Diploid - 2 simulated haplotypes, with 0.002 subs/site difference
- Provided outgroup genome to assemblers

Assemblathon 1

- From the simulated genome two Illumina Hi-Seq paired reads types were simulated:
- "paired ends" = 80X, with 200, 300 bp inserts
- "mate-pairs" = 40X, 3,000 and I0,000 bp inserts
- Various appropriate errors in the reads were simulated
- $\sim 5 \%$ E. coli contamination
- Total of I20X for the sample.
- Removing contamination gives overall 55X per haplotype

ID	Affiliations	Entries	Software	Used β
ASTR	Agency for Science, Technology and Research, Singapore Wellcome Trust Sanger Institute, UK	1	PE-Assembler	No
EBI	European Bioinformatics Insti- tute, UK	2	Phusion2, phrap	No
WTSI-S	Wellcome Trust Sanger Insitute, UK	4	BWA, Curtain, Velvet	No
CRACS	Center for Research in Advanced Computing Systems, Portugal	3	SGA	No
BCCGSC	BC Cancer Genome Sciences Cen- tre, Canada	5	ABySS	YBySS, Anchor

MSA

- For each assembly we form a multiple sequence alignment using Cactus* between:
- the two haplotypes
- the bacterial contamination
- the assembly
- To broadly confirm each analysis we used BLAST to align to each haplotype in turn
*Cactus: Algorithms for genome multiple sequence alignment Benedict Paten, Dent Earl, Ngan Nguyen, Mark Diekhans, Daniel Zerbino and David Haussler, Genome Research, September 201I

Coverage

ID	Hap Total (\%)	Hap $\alpha_{1}(\%)$	Hap $\alpha_{2}(\%)$	Bac (\%)	CDS (\%)	Unmapped
BGI	98.8	98.9	98.8	0.0	97.8	$2.637 \mathrm{e}+05$
BCCGSC	98.7	98.7	98.7	99.9	97.9	$6.549 \mathrm{e}+06$
WTSI-P	98.7	98.7	98.7	99.8	97.7	$5.369 \mathrm{e}+06$
RHUL	98.5	98.5	98.5	100.0	97.7	$4.961 \mathrm{e}+06$
CSHL	98.5	98.6	98.5	99.9	97.8	$7.811 \mathrm{e}+06$
Broad	98.3	98.4	98.3	68.9	97.5	$3.538 \mathrm{e}+06$
IoBUGA	98.3	98.3	98.3	4.8	97.4	$7.821 \mathrm{e}+05$
WTSI-S	97.8	97.8	97.8	99.1	95.2	$4.948 \mathrm{e}+06$
EBI	97.7	97.7	97.7	0.9	97.4	$4.577 \mathrm{e}+05$
nABySS	97.5	97.5	97.5	99.8	97.7	$1.111 \mathrm{e}+07$
DOEJGI	97.3	97.4	97.3	99.5	93.8	$5.304 \mathrm{e}+06$
nCLC	97.2	97.2	97.2	99.8	96.2	$5.673 \mathrm{e}+06$
nVelv	96.5	96.6	96.5	99.8	97.1	$8.028 \mathrm{e}+06$
CRACS	96.3	96.3	96.3	99.8	95.8	$5.265 \mathrm{e}+06$
IRISA	95.7	95.6	95.7	99.7	95.2	$4.968 \mathrm{e}+06$
DCSISU	94.3	94.3	94.2	99.5	93.6	$6.259 \mathrm{e}+06$
ASTR	90.9	90.9	90.9	100.0	92.9	$5.176 \mathrm{e}+06$
GACWT	86.4	86.4	86.4	0.0	88.9	$2.053 \mathrm{e}+06$
UCSF	83.7	83.7	83.7	0.0	88.3	$1.837 \mathrm{e}+06$
CIUoC	78.5	79.0	78.1	0.6	85.4	$3.638 \mathrm{e}+05$

Block

- Blocks are a maximal gapless alignment of a set of homologous sequences.
- In this case of the haplotypes and the given assembly
- Due to polymorphism present in the two haplotypes, blocks tend to be short
- Median block size $\sim 4 \mathrm{~Kb}$

Bacterial Contamination (this region $\sim 2 \mathrm{Mb}$ of 4.75 Mb)
Block Coverage
Fill Color Key

Adjacency Graph

- Block Edge (which you just saw)
- Nodes - ends of blocks edges
- Adjacency Edge - collections of connections between ends of blocks, representing connectivity of sequences

Node

Adjacency Graph

- Thread - A path of alternating adjacency edges and block edges
- Consistent edge - an edge that is labelled with segments from one or both of the Haplotypes and an assembly sequence
- Contig Path - A maximal subthread of an assembly thread in which all edges are consistent

Hap 1

Hap 2
Assembly

Contig path 3

Contig Path Coverage chro (76.25 Mb)

Fill Color Key
16

1
le2
1e3
1e4
1e5

Scaffold Path

ACTGACTG NNNNNN ACTGACTG...

- Scaffold Gap — a subgraph representing an indel and containing an assembly segment that is labelled with wildcard characters (N's)
- Scaffold Path — a maximal subthread of an assembly thread in which all edges are consistent or part of a scaffold gap subgraph

Hap 1
 Hap 2
 Assembly

Contig path 3

Scaffold gap

Scaffold Path Coverage

chrO (76.25 Mb)

Tuesday, November 8, 11

Raw Scaffolds

- The aspirations of assemblers

Fill Color Key Item > =

Scaffold Coverage

chro (76.25 Mb)

Blocks

BGI MAN M. Broad

Contig Paths

Scaffolds

We define the NG50 (G for genome) identically to the commonly used N50 for contigs and scaffolds, except that we estimate the length of the genome being assembled as being equal to the average of the two haplotypes.

The Scaffold Path NG50, Contig Path NG50 and Block NG50 values are identical to the NG50s, except that they are computed over the set of scaffold paths, contig paths and blocks, respectively.

N50 Statistics

Error Subgraphs

- We also defined "error subgraphs" of the MSAs, including:
- insertions
- deletions
- simulataneous insertions and deletions
- inter- and intra-chromosomal non-linear rearrangements

ID	Intra chromosomal joins	Inter chromosomal joins	Insertions	Deletions	Insertion and deletion	Insertion at ends	\sum errors
DOEJGI	21	160	55	108	40	72	456
WTSI-S	6	191	56	76	19	127	475
Broad	75	161	524	379	9	96	1,244
CRACS	684	309	198	123	50	305	1,669
nABySS	17	48	208	188	63	1,207	1,731
BGI	368	288	355	639	98	130	1,878
EBI	459	567	126	547	55	317	2,071
RHUL	691	349	172	264	26	1,050	2,552
ASTR	2,062	198	106	225	71	141	2,803
BCCGSC	349	289	248	229	107	1,640	2,862
IRISA	67	171	521	993	44	2,061	3,857
DCSISU	1,411	955	330	953	108	560	4,317
WTSI-P	1,940	449	1,851	289	87	279	4,895
CSHL	395	338	413	3,285	219	491	5,141
IoBUGA	919	330	1,663	2,933	356	108	6,309
$n \mathrm{nLC}$	23	64	2,359	2,237	68	2,532	7,283
GACWT	757	730	905	1,292	216	4,722	8,622
nVelv	2,885	455	1,473	2,838	306	669	8,626
CIUoC	1,205	684	1,189	2,026	65	6,113	11,282
UCSF	2,725	2,396	5,825	6,156	988	6,722	24,812

Long Range Contiguity

Assembly 1

Assembly 2

Assembly 3
Assembly 4

Contiguity Statistics

Etc.

- Additionally we analysed:
- Copy number variation
- Base calling
- Gene and repeat subregion assembly
- Evidence for phasing by the assemblies

Rankings

ID	Overall	CPNG50	SPNG50	Struct.	CC50	Subs.	Copy Num.	Cov. Tot.	Cov. CDS
BGI	34	$1(8.23 \mathrm{e}+04)$	$6(1.17 \mathrm{e}+05)$	6 (1878)	7 (5.66e+05)	9 (1.20e-05)	2 (6.75e-03)	1 (98.8)	2 (97.8)
Broad	37	$2(7.25 \mathrm{e}+04)$	$3(2.11 \mathrm{e}+05)$	3 (1244)	$1(2.66 \mathrm{e}+06)$	$4(2.92 \mathrm{e}-06)$	11 (6.71e-02)	6 (98.3)	7 (97.5)
WTSI-S	46	$9(2.48 \mathrm{e}+04)$	$1(4.95 \mathrm{e}+05)$	2 (475)	$3(1.14 \mathrm{e}+06)$	1 (1.30e-07)	9 (5.74e-02)	8 (97.8)	13 (95.2)
CSHL	50	$3(4.23 \mathrm{e}+04)$	$8(7.17 e+04)$	14 (5141)	$6(6.11 e+05)$	7 (1.04e-05)	6 (4.94e-02)	4 (98.5)	2 (97.8)
BCCGSC	56	$5(3.64 \mathrm{e}+04)$	$4(1.46 \mathrm{e}+05)$	10 (2862)	$8(3.22 \mathrm{e}+05)$	11 (1.32e-05)	15 (1.17e-01)	2 (98.7)	1 (97.9)
DOEJGI	56	15 (1.15e+04)	$2(4.86 \mathrm{e}+05)$	1 (456)	$2(1.89 \mathrm{e}+06)$	3 (4.43e-07)	7 (5.42e-02)	11 (97.3)	15 (93.8)
RHUL	58	$6(3.20 \mathrm{e}+04)$	$12(3.31 \mathrm{e}+04)$	8 (2552)	$14(1.59 \mathrm{e}+04)$	5 (3.52e-06)	5 (4.77e-02)	4 (98.5)	4 (97.7)
WTSI-P	63	$4(3.80 \mathrm{e}+04)$	$10(4.21 \mathrm{e}+04)$	13 (4895)	$12(3.41 \mathrm{e}+04)$	14 (1.48e-05)	$4(4.38 \mathrm{e}-02)$	2 (98.7)	4 (97.7)
EBI	64	17 (9.39e+03)	7 (1.13e+05)	7 (2071)	$9(3.04 \mathrm{e}+05)$	6 (5.20e-06)	$1(3.59 \mathrm{e}-03)$	9 (97.7)	8 (97.4)
CRACS	64	$11(1.55 \mathrm{e}+04)$	$5(1.45 \mathrm{e}+05)$	4 (1669)	$4(8.61 \mathrm{e}+05)$	2 (3.81e-07)	$12(6.82 \mathrm{e}-02)$	14 (96.3)	12 (95.8)
IoBUGA	71	7 (3.06e+04)	$11(3.54 \mathrm{e}+04)$	15 (6309)	$5(6.47 \mathrm{e}+05)$	16 (3.80e-05)	3 (8.38e-03)	6 (98.3)	8 (97.4)
nABySS	94	$10(1.99 \mathrm{e}+04)$	$15(2.00 \mathrm{e}+04)$	5 (1731)	16 (6.97e+03)	15 (1.81e-05)	19 (3.17e-01)	10 (97.5)	4 (97.7)
DCSISU	101	$12(1.35 \mathrm{e}+04)$	$9(5.61 \mathrm{e}+04)$	12 (4317)	$11(9.84 \mathrm{e}+04)$	12 (1.37e-05)	13 (6.91e-02)	16 (94.3)	16 (93.6)
ASTR	105	$8(2.53 \mathrm{e}+04)$	$13(3.14 \mathrm{e}+04)$	9 (2803)	$13(1.81 \mathrm{e}+04)$	10 (1.28e-05)	18 (2.88e-01)	17 (90.9)	17 (92.9)
nCLC	107	$16(9.47 \mathrm{e}+03)$	$18(9.54 \mathrm{e}+03)$	16 (7283)	$18(4.36 \mathrm{e}+03)$	8 (1.11e-05)	8 (5.61e-02)	12 (97.2)	11 (96.2)
IRISA	111	$14(1.28 \mathrm{e}+04)$	16 (1.88e+04)	11 (3857)	15 (8.28e+03)	13 (1.41e-05)	14 (7.26e-02)	15 (95.7)	13 (95.2)
nVelv	111	$18(5.65 \mathrm{e}+03)$	$14(2.75 \mathrm{e}+04)$	18 (8626)	10 (1.27e+05)	18 (6.21e-05)	10 (6.22e-02)	13 (96.5)	10 (97.1)
UCSF	141	$12(1.35 \mathrm{e}+04)$	$17(1.35 \mathrm{e}+04)$	20 (24812)	17 (6.78e+03)	20 (1.21e-04)	17 (2.30e-01)	19 (83.7)	19 (88.3)
GACWT	148	$20(2.53 \mathrm{e}+03)$	$19(7.82 \mathrm{e}+03)$	17 (8622)	$19(2.60 \mathrm{e}+03)$	17 (3.86e-05)	20 (3.46e-01)	18 (86.4)	18 (88.9)
CIUoC	153	$19(5.60 \mathrm{e}+03)$	$20(5.60 \mathrm{e}+03)$	19 (11282)	$20(1.27 \mathrm{e}+03)$	19 (1.11e-04)	16 (1.98e-01)	20 (78.5)	20 (85.4)

Conclusions

- We demonstrated that the best teams were able to assemble:
- $\sim 100 \mathrm{~Kb}$ regions without error or gaps (contig path analysis)
- 1 Mb regions without error, but with gaps (scaffold path analysis)
- Huge differences between assemblies
- Some metrics correlated, but every assembler had areas of weakness
- Path N50s and simple N50s correlate i.e. in this case, you could usefully, though imperfectly, compare N50 values.

Future Work

- Community now hard at work on Assemblathon 2:
- Is using three biological datasets
- Explores different read technologies
- Is at scale
- Meeting on Assemblathon 2 on Saturday afternoon

Thank you!

Dent Earl, Keith Bradnam, John St. John, Aaron Darling, Dawei Lin, Joseph Fass, Hung On Ken Yu, Vince Buffalo, Daniel R. Zerbino,Mark Diekhans, Ngan Nguyen, Pramila Nuwantha Ariyaratne,Wing-Kin Sung, Zemin Ning, Matthias Haimel, Jared T. Simpson,Nuno A. Fonseca, İnanç Birol, T. Roderick Docking, Isaac Y. Ho,Daniel S. Rokhsar, Rayan Chikhi, Dominique Lavenier, Guillaume Chapuis,Delphine Naquin, Nicolas Maillet, Michael C. Schatz, David R. Kelley,Adam M. Phillippy, Sergey Koren, Shiaw-Pyng Yang, Wei Wu,Wen-Chi Chou, Anuj Srivastava, Timothy I. Shaw, J. Graham Ruby,Peter Skewes-Cox, Miguel Betegon, Michelle T. Dimon, Victor Solovyev, Igor

Seledtsov, Petr Kosarev, Denis Vorobyev, Ricardo Ramirez-Gonzalez,Richard Leggett, Dan MacLean, Fangfang Xia, Ruibang Luo, Zhenyu Li,Yinlong Xie, Binghang Liu, Sante Gnerre, Iain MacCallum, Dariusz Przybylski, Filipe J. Ribeiro, Shuangye Yin, Ted Sharpe, Giles Hall,Paul J. Kersey, Richard Durbin, Shaun D. Jackman, Jarrod A.
Chapman,Xiaoqiu Huang, Joseph L. DeRisi, Mario Caccamo, Yingrui Li, David B.
Jaffe,Richard E. Green, David Haussler, Ian Korf

Article at:
(http://genome.cshlp.org/content/early/ 2011/11/02/gr.126599.111.abstract)

Benedict Paten | Assemblathon 1: A competitive assessment of de novo short read assembly methods

Sum of Substitution Errors / Correct (bits)

Sum of Proportional Copy Errors

