Supplementary results for Assemblathon 2 paper

Table S1: Different assembly IDs used in Assemblathon 2.

While the Assemblathon 2 entries were being assessed, an anonymous identifier was used to refer to all assemblies. This consisted of a species description followed by a 2–3 character code. These have since been replaced with more human-readable identifiers but as other publications may refer to the older identifiers we have included them here. Assembly names with a 'C' or 'E' suffix refer to 'competition' or 'evaluation' entries. For the newer assembly IDs, evaluation entries are indicated by the use of one or two asterisks appended to the assembly ID: one asterisk for the first, or only, evaluation entry and two asterisks to refer to the second evaluation entry.

Team name	New assembly ID prefixes	Old assembly IDs
ABL	ABL	bird 15C
ABySS	ABYSS	fish 7C, snake 9C
Allpaths	ALLP	bird 11C, fish 6C
BCM-HGSC	BCM	bird 2C, bird 3E, fish 1C, snake 1C
CBCB	CBCB	bird 9C
CoBiG ₂	COBIG	bird 8C
CRACS	CRACS	snake 10C
CSHL	CSHL	fish 12C, fish 14E, fish 15E
CTD	CTD	fish 2E, fish 9C, fish 10E
Curtain	CURT	snake 3C
GAM	GAM	snake 4C
IOBUGA	IOB	fish 13C, fish 16E
MLK Group	MLK	bird 5C
Meraculous	MERAC	bird 6C, fish 8C, snake 6C

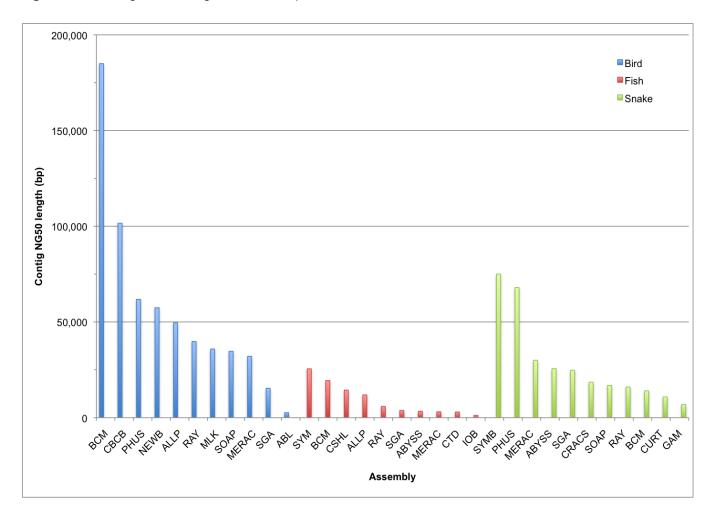
Newbler-454	NEWB	bird 7C
Phusion	PHUS	bird 1C, snake 5C
PRICE	PRICE	snake 12C
Ray	RAY	bird 4C, fish 4C, snake 2C
SGA	SGA	bird 10C, fish 3C, snake 7C
SOAPdenovo	SOAP	bird 12C, bird 13E, bird 14E, fish 11E, snake 11C
Symbiose	SYMB	fish 5C, snake 8C

Table S2: Details of principle assembly software and CPU/RAM requirements of different assembly pipelines.

Team name	Principle Software Used	CPU/RAM requirements
ABL	HyDA	512 GB RAM machine with 48 cores. Runtime: 14 hours
ABySS	ABySS v1.3.0 and Anchor	ABySS: 48 core-cluster for the single-end stage, and 12 cores for the paired-and and scaffolding stages, each with 4 GB RAM. Runtime was ~4 hours for the single-end stage, and 13 hours for the paired-end stage, then another three days for the final scaffolding stage.
		Anchor: Same cluster as above, using 1–100 cores for the various stages. Total runtime was approximately 13 hours.
Allpaths	ALLPATHS-LG	48 core server with 512 GB RAM, with a runtime of ~151–215 hours (depending on species).
BCM-HGSC	SeqPrep (version: a1e1d38), KmerFreq, Quake (v0.2), BWA, Newbler (v2.3), ALLPATHS-LG (version: allpathslg-37405), Atlas-Link, Atlas-GapFill, Phrap,	Estimated max RAM: 300–500GB (depending on species). Estimated running time: 3.5 weeks; using a single node with 1TB RAM and 32 CPUs, as well as a cluster of 100 cores each with 16 GB RAM.
	CrossMatch, Velvet, BLAST, and BLASR	Gap filling step used a cluster of 100–600 cores (depending on species), each with 16 GB RAM and required a run time of 90 hours.
CBCB	Celera assembler v7 and PacBio Corrected Reads (PBcR)	Runtime of 6.75 days for PacBio read correction and 9.5 days for assembly. Serial steps were executed on 32 core head node with 256 GB RAM. Parallel jobs were distributed across 60 nodes, with 16 cores and 32 GB RAM each.
CoBiG ₂	4Pipe4 pipeline, Seqclean	DELL Power Edge R710, CPU: 2x Intel Xeon

Instructions to run assemblers are included in Supplementary Methods for some teams.

	(version: 2011-02-22), Mira (v3.2.1), Bambus2	E5520, RAM: 64 GB, Runtime of 24 hours
CRACS	ABySS, SSPACE, Bowtie, and FASTX	Single 6-core AMD Opteron(tm) processor (2100MHz) with 128 GB of RAM. The approximate total amount of computation time required to generate the assembly was 300 hours.
CSHL	Metassembler, ALLPATHS, SOAPdenovo	Metassembler: <3 hours runtime and <50 GB RAM for the pairwise alignment. Computing the CE statistic required ~10 hours and 50 GB RAM, dominated by aligning the reads to the assemblies to determine placement. Evaluating the alignments and patching the assemblies required ~1 hour. ALLPATHS: 48 available CPUs, 945 hours of elapsed time, and 456 GB RAM memory usage peak SOAPdenovo: ~1 day, 100GB RAM, 48 cores for FLASH, and Quake
		 ~1 day for the basic assembly ~1 day to align the mates, filter failed mates, remove PCR duplicates ~1 day to improve the assembly with the corrected mates
CTD	Unspecified	48 GB RAM
Curtain	SOAPdenovo (v1.05), fastx_toolkit (v0.0.6), bwa (v0.5.8a), samtools (v0.1.17), velvet (v1.1.06), curtain (v0.2.3-BETA)	14 hours on 1 machine with 170 GB RAM, plus 11 hours on 20 machines with 60 GB RAM
GAM	GAM, CLC and ABySS	CLC: one server, 8 cores, 128Gb RAM, half a day runtime.
		ABySS, cluster with 6 nodes, 8 cores per node, one day runtime.
		GAM: one server, 8 cores, 128Gb RAM, half a


		day runtime.
		SSPACE: single CPU, 1 hour runtime.
IOBUGA	ALLPATHS-LG (38293) and SOAPdenovo (1.05)	32 CPU machine, 512 GB RAM. Runtime: ~ 120 hours for ALLPATH-LG and 48 hours for SOAPdenovo.
MLK Group	ABySS	672 core cluster, 1.2 TB RAM distributed, non- parallel steps done on 256 GB RAM machine and single node. SGA steps done on local workstation with 36 GB RAM
Meraculous	meraculous	500 core cluster with 8 GB RAM per core. Runtime: 20 hours. Single core machine with ~100 GB RAM. Runtime 10 hours.
Newbler-454	Newbler (R&D version, post2.8_v20110815). Run with options "-large -scaffold -het - sio -cpu 12"	Shared memory machine, 12 cores used, 130 GB RAM, run time of 18 hours
Phusion	Phusion2, SOAPdenovo, SSPACE	160GB RAM for 72 hours, 100 cores with 4GB RAM for 2 hours
PRICE	PRICE	Run on various 8–64 core machines with 16– 256 GB RAM.
Ray	Ray (version 1.7 with some modifications, see: <u>https://github.com/sebhtml/ass</u> <u>emblathon-2-ray</u>)	Version: 32 computers, 8 cores per computer, 24 GB RAM per computer. Approx. running time: 36–72 hours (depending on species).
SGA	SGA	Total CPU time: 1000–1900 hours (depending on species). Total wall clock time: 174 hours. Peak memory usage: 34–50 GB RAM (depending on species).
SOAPdenovo	SOAPdenovo	110–150 GB RAM (peak), depending on species, 24–32 CPUs (depending on species). Runtime 48–72 hours (depending on species).
Symbiose	Monument (for paired-end assembly), SSPACE (for mate- pair scaffolding in snake), SuperScaffolder (for mate-pair	Computational resources: 40 cores on 5 nodes with 140 GB RAM (max RAM usage not recorded)
scaffolding in fish), and		Runtimes:

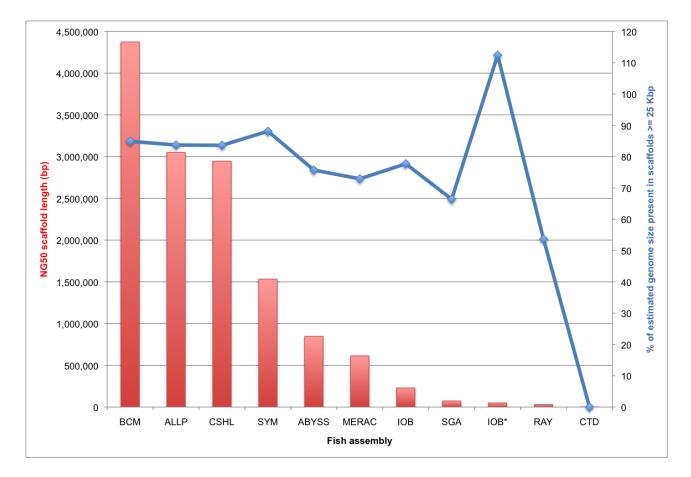
GapCloser (for GapClosing)	Indexing: ~1 day (40 cores / 5 nodes). Paired- end assembly: ~1 day (16 cores / 1 node). Two rounds of scaffolding and gap-filling: ~1 day (8 cores / 1 node)
----------------------------	--

Table S3: Availability of software used for assemblies

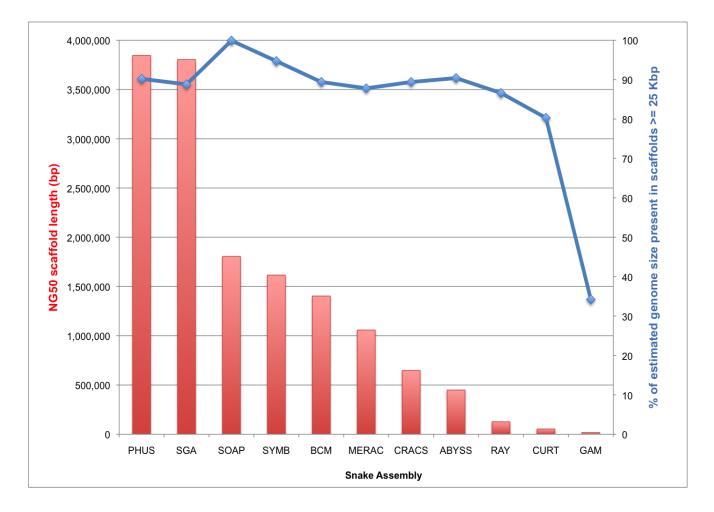

Assembly software	URL	Reference (if published)
4Pipe4 pipeline	https://github.com/StuntsPT/4Pipe4/commit/a1808cec ce7025a3fb90d64a337ccbe08619267a	
ABySS	http://www.bcgsc.ca/platform/bioinfo/software/abyss	[1]
ALLPATHS-LG	http://www.broadinstitute.org/software/allpaths- lg/blog/	[2]
Anchor	http://www.bcgsc.ca/platform/bioinfo/software/anchor	
Atlas-GapFill	https://www.hgsc.bcm.edu/content/atlas-gapfill	[3]
Atlas-Link	https://www.hgsc.bcm.edu/content/Atlas-Link	[4]
Bambus2	http://www.cbcb.umd.edu/software/bambus/	
BLASR	http://www.pacificbiosciences.com/products/software/ algorithms/	[5]
BLAST	http://blast.ncbi.nlm.nih.gov/	[6]
Bowtie	http://bowtie-bio.sourceforge.net/index.shtml	[7]
BWA	http://bio-bwa.sourceforge.net/	[8]
Celera	http://wgs-assembler.sourceforge.net/	[9]
CLC Genomics Workbench de novo assembler	http://clcbio.com	
Curtain	http://code.google.com/p/curtain/	
FASTX	http://hannonlab.cshl.edu/fastx_toolkit/	
GAM (Genomic Assemblies Merger)	https://github.com/vice87/gam-ngs	[10]
HyDA	http://compbio.cs.wayne.edu/software/hyda/	
KmerFreq (part of SOAPdenovo)	http://soap.genomics.org.cn/soapdenovo.html	[11]
Meraculous	ftp://ftp.jgi-psf.org/pub/JGI_data/meraculous/	[12]

Metassembler	http://sourceforge.net/apps/mediawiki/metassembler/i ndex.php?title=Metassembler	
MIRA	http://www.chevreux.org/projects_mira.html	
Monument		[13]
Newbler	http://454.com/products/analysis-software/index.asp	[14]
PBcR	http://www.cbcb.umd.edu/software/PBcR/	[15]
Phrap & Crossmatch	http://www.phrap.org/	
Phusion2	ftp://ftp.sanger.ac.uk/pub/zn1/phusion2/	[16]
PRICE	http://derisilab.ucsf.edu/software/price/	[17]
Quake	http://www.cbcb.umd.edu/software/quake/	[18]
Ray	http://denovoassembler.sourceforge.net	[19]
SAMtools	http://samtools.sourceforge.net/	[20]
Seqclean	http://sourceforge.net/projects/seqclean/files/seqc	
SeqPrep	https://github.com/jstjohn/SeqPrep	
SGA	http://github.com/jts/sga	[21]
SOAPdenovo	http://soap.genomics.org.cn/soapdenovo.html	[11]
SSPACE	http://www.baseclear.com/landingpages/sspacev12/	[22]
Velvet	http://www.ebi.ac.uk/~zerbino/velvet/	[23]

Figure S1: Contig NG50 length for all competitive assemblies


Figure S2: Relationship between scaffold NG50 length and contig NG50 length.

P-values from correlation coefficients: bird: P = 0.0587, fish: P = 0.0039, snake: P = 0.0398


Figure S3: NG50 scaffold length distribution in bird assemblies and the fraction of the fish genome represented by gene-sized scaffolds.

Primary Y-axis (red) shows NG50 length for fish assemblies: the N50 scaffold length that captures 50% of the estimated genome size (~1.6 Gbp). Secondary Y-axis (blue) shows percentage of estimated genome size that is represented by scaffolds >= 25 Kbp (the average length of a vertebrate gene).

Figure S4: NG50 scaffold length distribution in bird assemblies and the fraction of the snake genome represented by gene-sized scaffolds.

Primary Y-axis (red) shows NG50 length for snake assemblies: the N50 scaffold length that captures 50% of the estimated genome size (~1.0 Gbp). Secondary Y-axis (blue) shows percentage of estimated genome size that is represented by scaffolds >= 25 Kbp (the average length of a vertebrate gene).

Table S3: Summary of available transcript and RefSeq data for bird, fish, and snake.

Numbers in parentheses indicate partial length mRNAs. Data taken from release 192.0 of GenBank, accessed from: http://www.ncbi.nlm.nih.gov/nucleotide/

Species	Number of mRNAs	Number of RefSeq entries
Bird (<i>Melopsittacus undulatus</i>)	26 (15)	1
Fish (<i>Maylandia zebra</i>)	27 (22)	0
Snake (Boa constrictor constrictor)	0	0

Figure S5: Alignment of snake predicted CEGMA proteins for the core gene family KOG3372.

Alignment made using T-COFFEE program with default parameters. The initial set of proteins predicted by CEGMA are aligned to the underlying HMMER profile for each core gene, and only those that span at least 70% of the alignment are considered 'full-length' and retained.

CLUSTAL FORMAT for T-COFFEE Version 5.31 [http://www.tcoffee.org], CPU=3.13 sec, SCORE=96, Nseq=11, Len=205 MNTVLTRANSLFAFSLSVMAALTFGCFITTAFKERTVPVSIAVSRVML-----KNVED ABYSS BCM MNTVLTRANSLFAFSLSVMAALTFGCFITTAFKERTVPVSIAVSRVML-----KNVED MNTVLTRANSLFAFSLSVMAALTFGCFITTAFKERTVPVSIAVSRVML-----KNVED CRACS CURT MNTVLTRANSLFAFSLSVMAALTFGCFITTAFKERTVPVSIAVSRVML------KNVED MNTVLTRANSLFAFSLSVMAALTFGCFITTAFKERTVPVSIAVSRVMLFYEVRKIKNVED GAM MNTVLTRANSLFAFSLSVMAALTFGCFITTAFKERTVPVSIAVSRVML------KNVED MERAC PHUS MNTVLTRANSLFAFSLSVMAALTFGCFITTAFKERTVPVSIAVSRVML------KNVED RAY MNTVLTRANSLFAFSLSVMAALTFGCFITTAFKERTVPVSIAVSRVML-----KNVED SGA MNTVLTRANSLFAFSLSVMAALTFGCFITTAFKERTVPVSIAVSRVML-----KNVED MNTVLTRANSLFAFSLSVMAALTFGCFITTAFKERTVPVSIAVSRVMLFYEVRKIKNVED SYMB SOAP MNTVLTRANSLFAFSLSVMAALTFGCFITTAFKERTVPVSIAVSRVML-----KNVED ***** ABYSS FTGPGERSDLGIITFNISANILYYKHSSLFPNIFDWNVKQLFLYLSAEYSTKNN------FTGPGERSDLGIITFNISANILYYKHSSLFPNIFDWNVKQLFLYLSAEYSTKNN-----BCM CRACS FTGPGERSDLGIITFNISANILYYKHSSLFPNIFDWNVKQLFLYLSAEYSTKNN-----CURT FTGPGERSDLGIITFNISANILYYKHSSLFPNIFDWNVKOLFLYLSAEYSTKNN-----FTGPGERSDLGIITFNISANILYYKHSSLFPNIFDWNVKQLFLYLSAEYSTKNNLPHTHI GAM FTGPGERSDLGIITFNISANILYYKHSSLFPNIFDWNVKQLFLYLSAEYSTKNN-----MERAC PHUS FTGPGERSDLGIITFNISANILYYKHSSLFPNIFDWNVKQLFLYLSAEYSTKNN------RAY FTGPGERSDLGIITFNISANILYYKHSSLFPNIFDWNVKQLFLYLSAEYSTKNN------FTGPGERSDLGIITFNISANILYYKHSSLFPNIFDWNVKQLFLYLSAEYSTKNN------SGA FTGPGERSDLGIITFNISANILYYKHSSLFPNIFDWNVKQLFLYLSAEYSTKNN------SYMB FTGPGERSDLGIITFNISANILYYKHSSLFPNIFDWNVKOLFLYLSAEYSTKNN------SOAP ABYSS ---ALNQVVLWDKIILRGDDPNLLLKDMKSKYFFFDDGNGLKGNRNVTLTLSWNVVPNAG BCM ---ALNQVVLWDKIILRGDDPNLLLKDMKSKYFFFDDGNGLKGNRNVTLTLSWNVVPNAG CRACS ---ALNQVVLWDKIILRGDDPNLLLKDMKSKYFFFDDGNGLKGNRNVTLTLSWNVVPNAG CURT ---ALNQVVLWDKIILRGDDPNLLLKDMKSKYFFFDDGNGLKGNRNVTLTLSWNVVPNAG YGHALNQVVLWDKIILRGDDPNLLLKDMKSKYFFFDDGNGLK-------GAM MERAC ---ALNQVVLWDKIILRGDDPNLLLKDMKSKYFFFDDGNGLKGNRNVTLTLSWNVVPNAG PHUS ---ALNQVVLWDKIILRGDDPNLLLKDMKSKYFFFDDGNGLKGNRNVTLTLSWNVVPNAG RAY ---ALNOVVLWDKIILRGDDPNLLLKDMKSKYFFFDDGNGLKGNRNVTLTLSWNVVPNAG ---ALNQVVLWDKIILRGDDPNLLLKDMKSKYFFFDDGNGLKGNRNVTLTLSWNVVPNAG SGA ---ALNQVVLWDKIILRGDDPNLLLKDMKSKYFFFDDGNGLKGNRNVTLTLSWNVVPNAG SYMB ---ALNOVVLWDKIILRGDDPNLLLKDMKSKYFFFDDGNGLKGNRNVTLTLSWNVVPNAG SOAP

ABYSS	ILPLVTGAGHISVPFPDTYKMTKSY
BCM	ILPLVTGAGHISVPFPDTYKMTKSY
CRACS	ILPLVTGAGHISVPFPDTYKMTKSY
CURT	ILPLVTGAGHISVPFPDTYKMTKSY
GAM	

Table S4: CEGMA bird results: total number of all CEGs present in all bird assemblies.

Results in 3rd column reflect the numbers in the 2nd column as a percentage of the 442 CEGs that were found across all bird assemblies. Final column shows results for a subset of 248 CEGs which are the most highly conserved CEGs, and which tend to occur as single copy genes.

Assembly	Number of 458 CEGs present in assembly	% of 442 CEGs present across all bird assemblies	Number of 248 highly conserved CEGs present
PHUS	391	88.5%	176
BCM	420	95.0%	197
BCM*	420	95.0%	197
RAY	404	91.4%	190
MLK	401	90.7%	181
MERAC	393	88.9%	189
NEWB	380	86.0%	179
СВСВ	403	91.2%	197
SGA	371	83.9%	169
ALLP	408	92.3%	199
SOAP	416	94.1%	202
SOAP*	415	93.9%	202
SOAP**	412	93.2%	201
ABL	229	51.8%	61

Table S5: CEGMA fish results: total number of all CEGs present in all fish assemblies.

Results in 3rd column reflect the numbers in the 2nd column as a percentage **o**f the 455 CEGs that were found across all fish assemblies. Final column shows results for a subset of 248 CEGs which are the most highly conserved CEGs, and which tend to occur as single copy genes.

Assembly	Number of 458 CEGs present in assembly	% of 455 CEGs present across all fish assemblies	Number of 248 highly conserved CEGs present
BCM	434	95.4%	228
CTD*	169	37.1%	25
SGA	423	94.9%	207
RAY	435	95.6%	210
SYM	428	94.1%	221
ALLP	430	94.5%	225
ABYSS	431	94.7%	224
MERAC	426	93.6%	216
СТD	350	76.9%	103
CTD**	207	45.5%	41
SOAP*	436	95.8%	225
CSHL	436	95.8%	227
IOB	387	85.1%	163
CSHL*	436	95.8%	227
CSHL**	307	67.5%	86
IOB*	83	18.2%	16

Table S6: CEGMA snake results: total number of all CEGs present in all snake assemblies.

Results in 3rd column reflect the numbers in the 2nd column as a percentage of the 454 CEGs that were found across all snake assemblies. Final column shows results for a subset of 248 CEGs which are the most highly conserved CEGs, and which tend to occur as single copy genes.

Assembly	Number of 458 CEGs present in assembly	% of 454 CEGs present across all snake assemblies	Number of 248 highly conserved CEGs present	
BCM	434	95.6%	214	
RAY	422	93.0%	194	
CURT	360	79.3%	91	
GAM	415	91.4%	157	
PHUS	435	95.8%	214	
MERAC	430	94.7%	217	
SGA	433	95.4%	218	
SYMB	436	96.0%	209	
ABYSS	429	94.5%	208	
CRACS	438	96.5%	211	
SOAP	428	94.3%	209	

Figure S6: Correlation between use of two different Core Eukaryotic Genes (CEGs) datasets.

Assemblies which contain more full-length core genes from the set of 458 CEGs, also contain more full-length core genes from the set of 248 CEGs which represent the most highly-conserved, least-paralogous CEGs. All correlations are highly statistically significant (P < 0.000001).

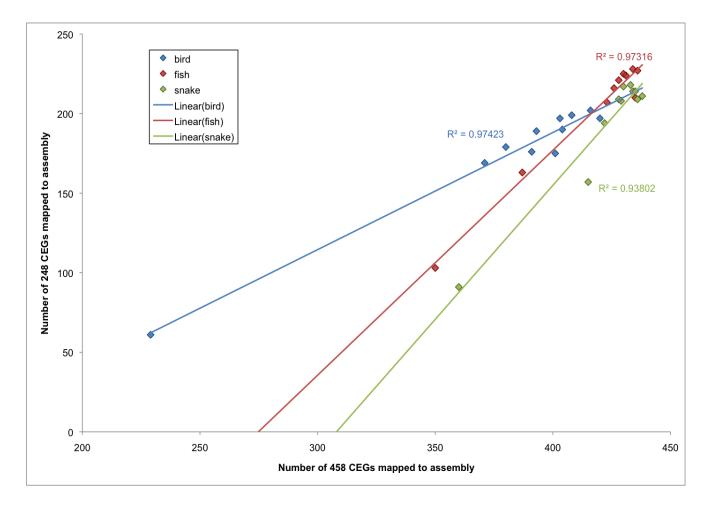
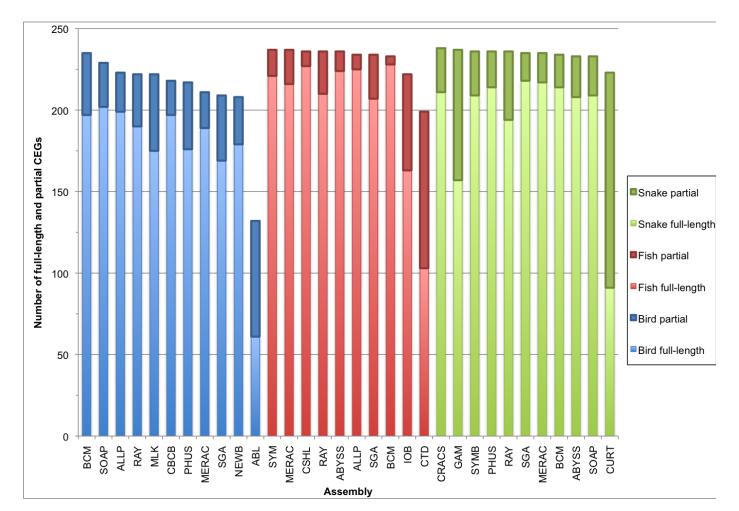
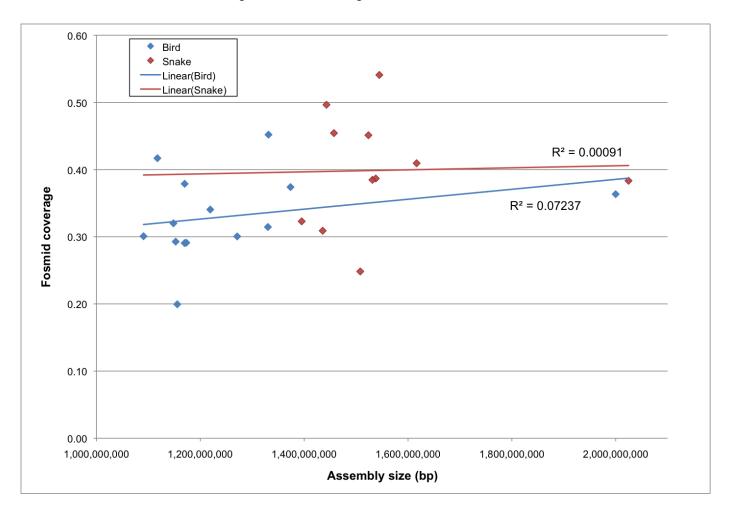




Figure S7: Some core genes are present as partial matches in assemblies.

Results from the CEGMA analysis of the 248 Core Eukaryotic Genes (CEGs) dataset includes details of how many CEGs match at full-length or only partially. The fraction of the alignment of a predicted protein to the HMMER profile can range from 20–100%. If this fraction exceeds 70% the protein is classed as a full-length CEG, otherwise it is classified as partial. In both cases, the predicted protein must also exceed a pre-determined cut-off score (see[24]).

Figure S8: Relationship between assembly size and Fosmid coverage in bird and snake assemblies.

Coverage calculated using COMPASS tool.

Table S5: Using validated fosmid regions (VFRs) to assess short-range accuracy in bird assemblies.

Results from 86 VFRs, producing 988 VFR fragments of 1,000 nt and 988 pairs of VFR 'tags' (the end 100 nt of each fragment). Expected distance between start coordinates of VFR tags = 900 nt. Tag pairs are deemed to have mapped correctly if the distance between them is 898–902 nt.

Assembly	Number of pairs of VFR tags that both map to the same scaffold	Number of pairs of VFR tags that map uniquely at correct distance apart (898–902 nt)	% of uniquely mapped tag pairs that map at correct distance apart	Extremes of mismapping (lowest and highest distances in nt)	
PHUS	815	557	89.1%	702–41,949	
BCM	890	713	92.6%	882–2,780	
RAY	896	699	91.6%	746–4,175	
MLK	857	544	93.8%	804–2,780	
MERAC	840	746	91.9%	800–7,815	
NEWB	849	733	91.2%	871–2,780	
CBCB	897	744	91.4%	855–8,002	
SGA	795	709	91.6%	713–34,915	
ALLP	881	758	92.6%	875–43,292	
SOAP	876	720	90.1%	709–4,805	
ABL	337	332	98.5%	893–952	

Table S6: Using validated fosmid regions (VFRs) to assess short-range accuracy in snake assemblies.

Results from 56 VFRs, producing 350 VFR fragments of 1,000 nt and 988 pairs of VFR 'tags' (the end 100 nt of each fragment). Expected distance between start coordinates of VFR tags = 900 nt. Tag pairs are deemed to have mapped correctly if the distance between them is 898–902 nt.

Assembly	Number of pairs of VFR tags that both map to the same scaffold	Number of pairs of VFR tags that map uniquely at correct distance apart (898–902 nt)	% of uniquely mapped tag pairs that map at correct distance apart	Extremes of mismapping (lowest and highest distances in nt)	
BCM	278	240	90.2%	835–1,864	
RAY	311	253	95.5%	860–2,973	
CURT	272	220	87.6%	835–46,813	
GAM	236	200	88.9%	815–1,022	
PHUS	336	247	89.2%	653–2,070	
MERAC	319	263	95.3%	875–912	
SGA	323	265	94.3%	860–920	
SYMB	300	211	87.9%	673–1,364	
ABYSS	323	267	94.7%	878–2,206	
CRACS	304	253	90.7%	855–3,472	
SOAP	334	227	90.4%	830–4,858	

Figure S9: Average rank of bird assemblies when assessed by ten key metrics.

Each assembly was ranked by ten different key metrics and then an average rank was calculated. Positive and negative error bars reflect the best and worst average rank that could be achieved if any one key metric was omitted from the analysis. Assemblies in red represent evaluation entries.

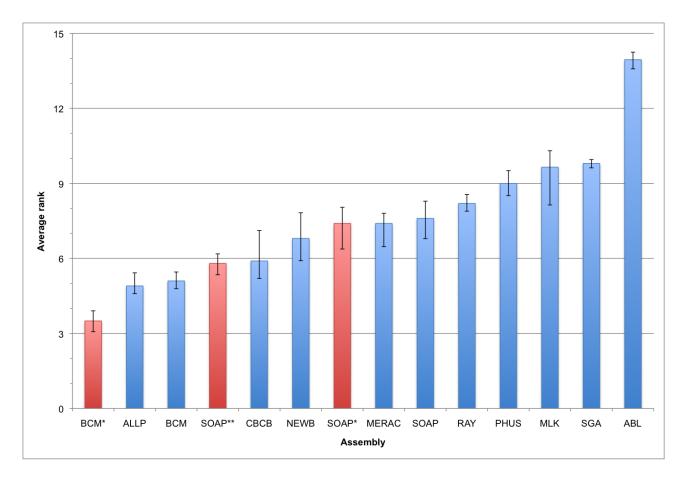


Figure S10: Average rank of fish assemblies when assessed by seven key metrics.

Each assembly was ranked by seven different key metrics and then an average rank was calculated. Positive and negative error bars reflect the best and worst average rank that could be achieved if any one key metric was omitted from the analysis. Assemblies in red represent evaluation entries.

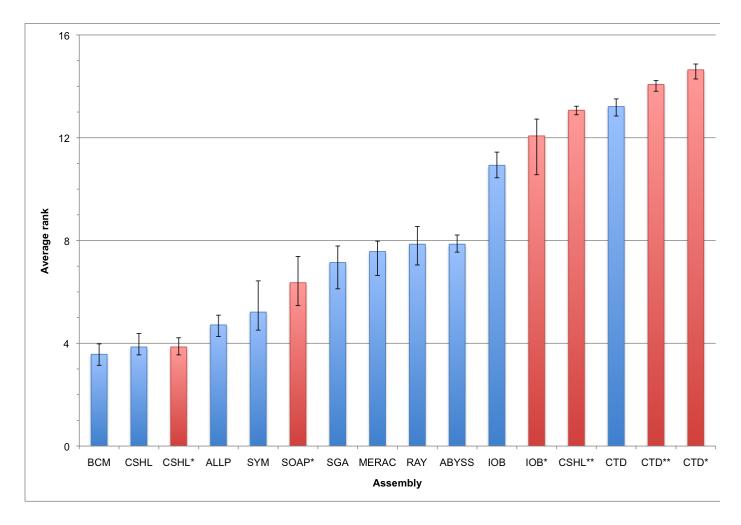


Figure S11: Average rank of snake assemblies when assessed by ten key metrics.

Each assembly was ranked by ten different key metrics and then an average rank was calculated. Positive and negative error bars reflect the best and worst average rank that could be achieved if any one key metric was omitted from the analysis.

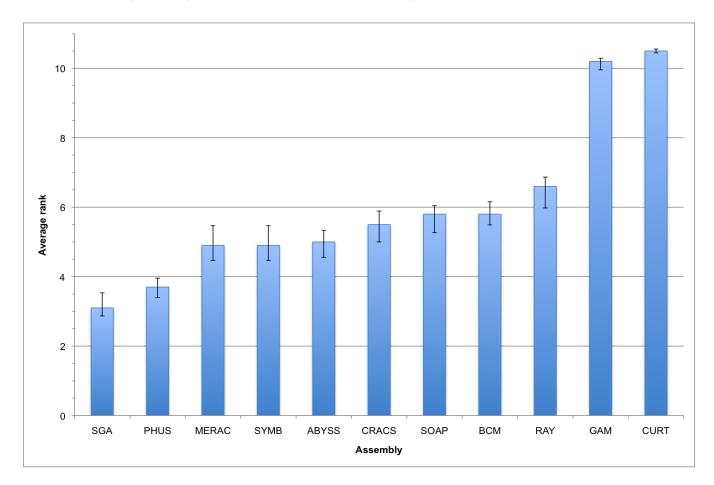


Figure S12: Correlation between key metrics in bird.

Pairwise Pearson's correlation matrix. Above the diagonals are Pearson's R correlations with significance (Bonferroni corrected) indicated as: *** P < 0.001; ** P < 0.01; * P < 0.05. Below the diagonal shows the scatterplot of the intersecting row and column key metrics with a simple linear regression drawn in red. Key metrics are CEGMA (number of 458 core eukaryotic genes present); COVERAGE and VALIDITY (of Validated Fosmid Regions, calculated using COMPASS tool); OPTICAL MAP 1 and OPTICAL MAP 1-3 (coverage of optical maps at level 1 or at all levels); VFRT SCORE (summary score of Validated Fosmid Region Tag analysis), GENE-SIZED (the fraction of an assembly's scaffolds that are 25 Kbp or longer); SCAFFOLD NG50 and CONTIG NG50 (the lengths of the scaffold or contig that takes the sum length of all scaffolds/contigs past 50% of the estimated genome size); REAPR SCORE (summary score of scaffolds from REAPR tool).

	-2 0 1 2		-2.0 -0.5 1.0		-3 -1 0		-1.0 0.0 1.0		-0.5 1.0 2.0
CEGMA	0.57	0.40	0.61	0.79	0.96	0.97	0.51	0.47	0.13 T
-2 0 1 2 8968 0	COVERAGE	0.77	0.39	0.45	0.58	0.60	0.30	0.44	0.13
	0000 0 0000 0 0000 0	VALIDITY	0.59	0.65	0.36	0.40	0.48	0.22	0.043
-2.0 0.0	000 0 0 0 0	000 0 0 0	OPTICAL_MAP_1	0.91	0.53	0.58	0.64	0.32	0.46
00000 00 00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	OPTICAL_MAP_1.3	0.70	0.74	0.70	0.41	0.33
		°°°°°°°°	000000	000	VFTR_SCORE	0.94	0.41	0.52	0.17
000	800 8 0 0	° 9 ° 9 ° ° °	°°° • • • • • • • • • • • • • • • • • •	° ° ° ° ° ° ° • • • • • • • • • • • • •	0 00000	GENE.SIZED	0.36	0.37	0.16 T
-1.0 0.5	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	°°° °		000 00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	° ° ° °	SCAFFOLD_NG50	0.50	0.046
00000000000000000000000000000000000000	00000 0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	°°°°°	0 0 0 0 0 0 0 0	° ° 8°	CONTIG_NG50	0.055
			° ° °	-2.5 -1.0 0.5		-3 -1 0	° °°		REAPR_SCORE

Figure S13: Correlation between key metrics in fish.

Pairwise Pearson's correlation matrix. Above the diagonals are Pearson's R correlations with significance (Bonferroni corrected) indicated as: *** P < 0.001; ** P < 0.01; * P < 0.05. Below the diagonal shows the scatterplot of the intersecting row and column key metrics with a simple linear regression drawn in red. Key metrics are CEGMA (number of 458 core eukaryotic genes present); COVERAGE and VALIDITY (of Validated Fosmid Regions, calculated using COMPASS tool); OPTICAL MAP 1 and OPTICAL MAP 1-3 (coverage of optical maps at level 1 or at all levels); VFRT SCORE (summary score of Validated Fosmid Region Tag analysis), GENE-SIZED (the fraction of an assembly's scaffolds that are 25 Kbp or longer); SCAFFOLD NG50 and CONTIG NG50 (the lengths of the scaffold or contig that takes the sum length of all scaffolds/contigs past 50% of the estimated genome size); REAPR SCORE (summary score of scaffolds from REAPR tool).

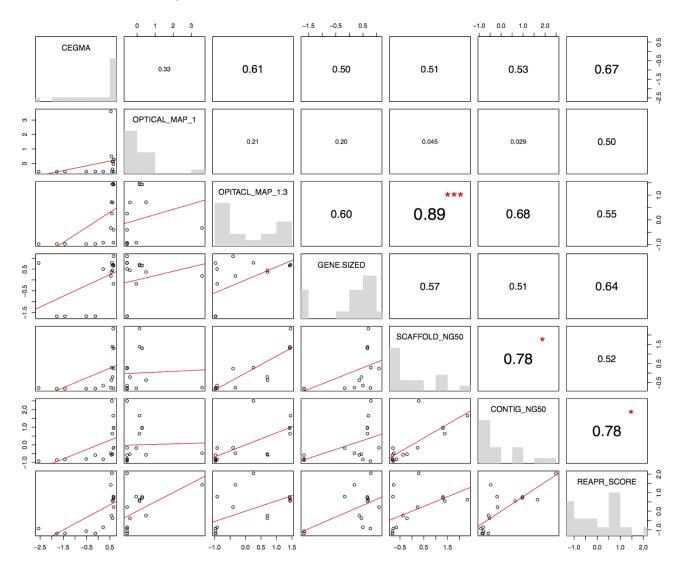
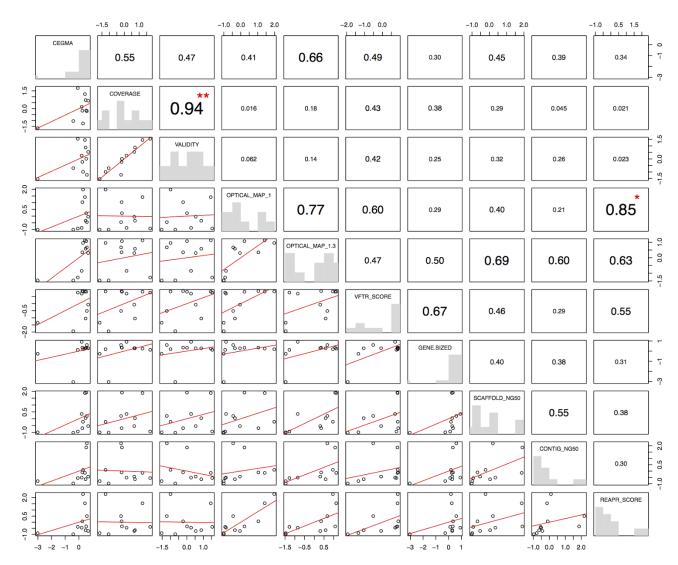
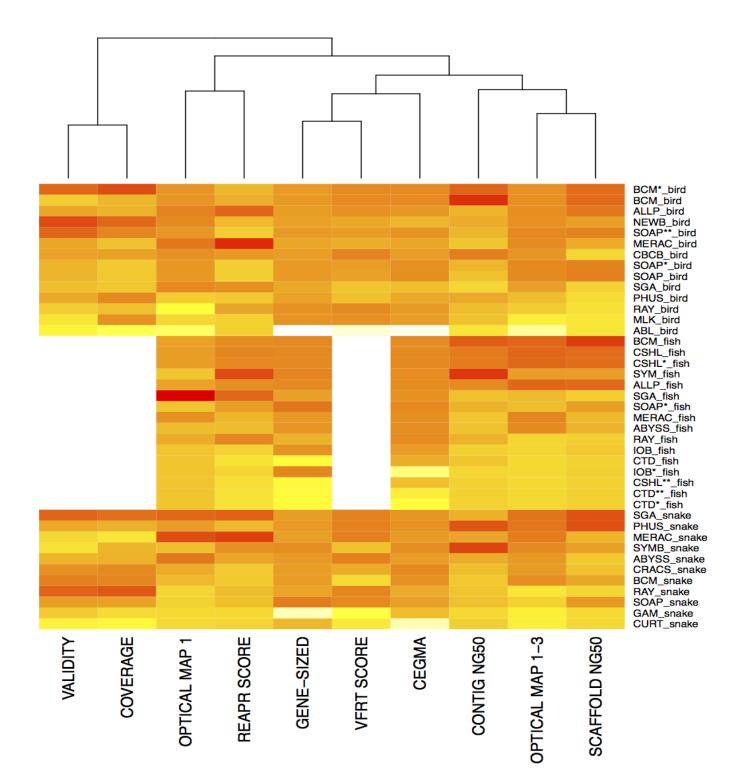


Figure S14: Correlation between key metrics in snake.

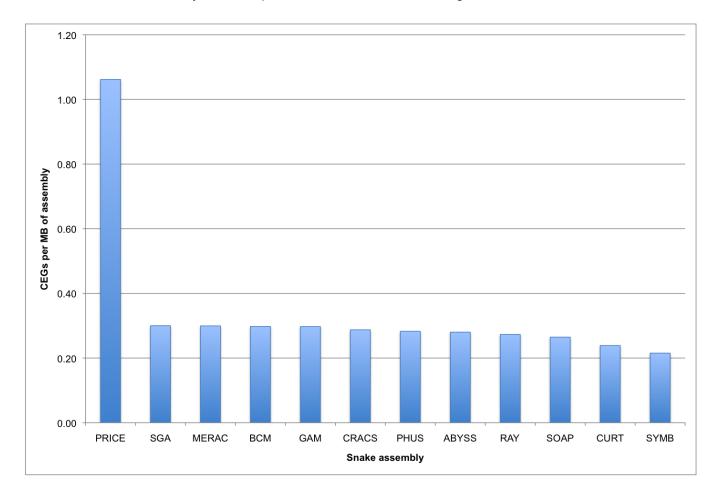
Pairwise Pearson's correlation matrix. Above the diagonals are Pearson's R correlations with significance (Bonferroni corrected) indicated as: *** P < 0.001; ** P < 0.01; * P < 0.05. Below the diagonal shows the scatterplot of the intersecting row and column key metrics with a simple linear regression drawn in red. Key metrics are CEGMA (number of 458 core eukaryotic genes present); COVERAGE and VALIDITY (of Validated Fosmid Regions, calculated using COMPASS tool); OPTICAL MAP 1 and OPTICAL MAP 1-3 (coverage of optical maps at level 1 or at all levels); VFRT SCORE (summary score of Validated Fosmid Region Tag analysis), GENE-SIZED (the fraction of an assembly's scaffolds that are 25 Kbp or longer); SCAFFOLD NG50 and CONTIG NG50 (the lengths of the scaffold or contig that takes the sum length of all scaffolds/contigs past 50% of the estimated genome size); REAPR SCORE (summary score of scaffolds from REAPR tool).




Figure S15: Correlation between key metrics in bird and snake.

Pairwise Pearson's correlation matrix from a combined dataset of z-score values from bird and snake. Above the diagonals are Pearson's R correlations with significance (Bonferroni corrected) indicated as: *** P < 0.001; ** P < 0.01; * P < 0.05. Below the diagonal shows the scatterplot of the intersecting row and column key metrics with a simple linear regression drawn in red. Key metrics are CEGMA (number of 458 core eukaryotic genes present); COVERAGE and VALIDITY (of Validated Fosmid Regions, calculated using COMPASS tool); OPTICAL MAP 1 and OPTICAL MAP 1-3 (coverage of optical maps at level 1 or at all levels); VFRT SCORE (summary score of Validated Fosmid Region Tag analysis), GENE-SIZED (the fraction of an assembly's scaffolds that are 25 Kbp or longer); SCAFFOLD NG50 and CONTIG NG50 (the lengths of the scaffold or contig that takes the sum length of all scaffolds/contigs past 50% of the estimated genome size); REAPR SCORE (summary score of scaffolds from REAPR tool).

	-2 0 1 2		-2 0 1 2		-3 -1 0 1		-1.0 0.0 1.0 2.0		-1 0 1 2
CEGMA	0.56	0.43	0.52	0.73 ^{**}	0.75	0.68	0.48	0.44	0.22 - T
-2 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COVERAGE	0.84	0.21	0.33	0.51	0.50	0.30	0.23	0.081
00000000000000000000000000000000000000	0000 0000 0000 0000 0000	VALIDITY	0.36	0.43	0.39	0.33	0.41	0.0086	0.014
-2 0 1 2 0 8 0 8 0 8 0 0 0 0 0 0 0 0 0 0 0 0			OPTICAL_MAP_1	0.85	0.56	0.45	0.53	0.27	0.63
0 0 0 0 0 0 0		°° 88 0 0 0 00 0 0 0	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	OPTICAL_MAP_1.3	0.60	0.64	0.69*	0.49	0.46
-3 -1 -1 0 0000					VFTR_SCORE	0.82	0.43	0.42	0.33
° °	00 880 8000	8 ₀ 8 0800 0 0	° 88600000000000000000000000000000000000	0000 100 000	00000000	GENE.SIZED	0.37	0.37	0.22 T
-1.0 0.5 2.0		00000000000000000000000000000000000000	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	00 80 00 R		00 00 00 00 00 00 00 00 00 00 00 00 00	SCAFFOLD_NG50	0.53	0.19
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 0 0 8 8 0 8 8 0 8 0 0 8 0 0 0 0 0 0	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	° °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	00000000000000000000000000000000000000	0 00 00 00 00 00 00 00 00 00 00 00 00 0	00000000000000000000000000000000000000		CONTIG_NG50	0.10
								0 0 0 0 0 0 0 0 0 0 0 0 0 0	REAPR_SCORE


Figure S16: Heat map showing performance of all assemblies as assessed by z-scores from all key metrics.

Assemblies arranged in order of their sum z-score (after separating by species). Red and yellow colors indicate higher and lower z-score values respectively. Three key metrics were not computable for fish assemblies and have been left blank. Key metrics are CEGMA (number of 458 core eukaryotic genes present); COVERAGE and VALIDITY (of Validated Fosmid Regions, calculated using COMPASS tool); OPTICAL MAP 1 and OPTICAL MAP 1-3 (coverage of optical maps at level 1 or at all levels); VFRT SCORE (summary score of Validated Fosmid Region Tag analysis), GENE-SIZED (the fraction of an assembly's scaffolds that are 25 Kbp or longer); SCAFFOLD NG50 and CONTIG NG50 (the lengths of the scaffold or contig that takes the sum length of all scaffolds/contigs past 50% of the estimated genome size); REAPR SCORE (summary score of scaffolds from REAPR tool).

Supplementary Figure 17. Performance of all snake assemblies when assessed in terms of 'number of core eukaryotic genes (CEGs) per Mbp of submitted assembly'.

PRICE assembly (first data point) was excluded from full analysis in the Assemblathon 2 contest because the total assembly size comprised <25% of the estimated genome size.

References

1. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, and Birol I: **ABySS: a parallel assembler for short read sequence data.** *Genome research* 2009, **19**:1117-1123.

2. Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea TP, and Sykes S: **High-quality draft assemblies of mammalian genomes from massively parallel sequence data.** *Proceedings of the National Academy of Sciences* 2011, **108**:1513-1518.

3. Song S, Liu Y, Gibbs RA, and Worley KC: **ATLAS-GapFill: A Practical Tool to Improve the Continuity of a Reference Genome Using Second Generation Sequence Data (in preparation).**.

4. Deng J, Qu J, Qin X, Gibbs RA, and Worley KC: **ATLAS-Link: Scaffolding Draft Genome Assemblies Using Next-Gen Mate Pair Data (in preparation).**

5. Chaisson MJ, and Tesler G: **Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory.** *BMC bioinformatics* 2012, **13**:238.

6. Altschul SF, Gish W, Miller W, Myers EW, and Lipman DJ: **Basic local alignment search tool.** *Journal of molecular biology* 1990, **215**:403-410.

7. Langmead B, Trapnell C, Pop M, and Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. *Genome Biol* 2009, 10:R25.
8. Li H, and Durbin R: Fast and accurate short read alignment with Burrows--Wheeler transform. *Bioinformatics* 2009, 25:1754-1760.

9. Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, Brownley A, Johnson J, Li K, Mobarry C, and Sutton G: **Aggressive assembly of pyrosequencing reads with mates.** *Bioinformatics* 2008, **24**:2818-2824.

10. Casagrande A, Del Fabbro C, Scalabrin S, and Policriti A: **GAM: Genomic Assemblies Merger: A Graph Based Method to Integrate Different Assemblies.** In *Bioinformatics and Biomedicine, 2009. BIBM'09. IEEE International Conference on.* 2009:321-326.

11. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, and Kristiansen K: **De novo** assembly of human genomes with massively parallel short read sequencing. *Genome research* 2010, **20**:265-272.

12. Chapman JA, Ho I, Sunkara S, Luo S, Schroth GP, and Rokhsar DS: **Meraculous: de novo** genome assembly with short paired-end reads. *PloS one* 2011, **6**:e23501.

13. Chikhi R, and Lavenier D: Localized genome assembly from reads to scaffolds: practical traversal of the paired string graph. *Algorithms in Bioinformatics* 2011:39-48.

14. Quinn NL, Levenkova N, Chow W, Bouffard P, Boroevich KA, Knight JR, Jarvie TP,

Lubieniecki KP, Desany BA, and Koop BF: Assessing the feasibility of GS FLX

Pyrosequencing for sequencing the Atlantic salmon genome. BMC genomics 2008, 9:404.

15. Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Wang Z, Rasko DA, McCombie WR, Jarvis ED, and Phillippy AM: **Hybrid error correction and de novo assembly of single-molecule sequencing reads.** *Nature Biotechnology* 2012, **30**:693-700.

16. Mullikin JC, and Ning Z: The Phusion Assembler. Genome Research 2003, 13:81-90.

17. PRICE Genome Assembler [http://derisilab.ucsf.edu/software/price/index.html]

18. Kelley DR, Schatz MC, and Salzberg SL: **Quake: quality-aware detection and correction of sequencing errors.** *Genome Biol* 2010, **11**:R116.

19. Boisvert S, Laviolette F, and Corbeil J: **Ray: Simultaneous assembly of reads from a mix of high-throughput sequencing technologies.** *Journal of Computational Biology* 2010, **17**:1519-1533.

20. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, and Durbin R: **The sequence alignment/map format and SAMtools.** *Bioinformatics* 2009, **25**:2078-2079.

21. Simpson JT, and Durbin R: **Efficient de novo assembly of large genomes using compressed data structures.** *Genome Research* 2011.

22. Boetzer M, Henkel CV, Jansen HJ, Butler D, and Pirovano W: **Scaffolding pre-assembled contigs using SSPACE.** *Bioinformatics* 2011, **27**:578-579.

23. Zerbino DR, and Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. *Genome research* 2008, **18**:821-829.

24. Parra G, Bradnam K, Ning Z, Keane T, and Korf I: **Assessing the gene space in draft genomes.** *Nucleic acids research* 2009, **37**:289-297.